Imaging Localized Energy States in Silicon-doped InGaN Nanowires Using 4D Electron Microscopy

R. Bose, A. Adhikari, V.M. Burlakov, G. Liu, M.A. Haque, D. Priante, M.N. Hedhili, N. Wehbe, C. Zhao, H. Yang, T.K. Ng, A. Goriely, O.M. Bakr, T. Wu, B.S. Ooi, O.F. Mohammed
ACS Energy Letters, 3, pp. 476481, (2018)

Imaging Localized Energy States in Silicon-doped InGaN Nanowires Using 4D Electron Microscopy

Keywords

Ultrafast electron microscopy, Nanowires

Abstract

​Introducing dopants into InGaN NWs is known to significantly improve their device performances through a variety of mechanisms. However, to further optimize device operation under the influence of large specific surfaces, a thorough knowledge of ultrafast dynamical processes at the surface and interface of these NWs is imperative. Here, we describe the development of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) as an extremely surface-sensitive method to directly visualize in space and time the enormous impact of silicon doping on the surface-carrier dynamics of InGaN NWs. Two time regime dynamics are identified for the first time in a 4D S-UEM experiment: an early time behavior (within 200 picoseconds) associated with the deferred evolution of secondary electrons due to the presence of localized trap states that decrease the electron escape rate and a longer timescale behavior (several ns) marked by accelerated charge carrier recombination. The results are further corroborated by conductivity studies carried out in dark and under illumination.

Code

DOI: 10.1021/acsenergylett.7b01330

Sources

Website PDF

See all publications 2018