Tuning the molecular design of polymers to achieve self-assembled degradable, semiconducting, and stretchable composites - Dr. Helen Tran


Tuning the molecular design of polymers to achieve self-assembled degradable, semiconducting, and stretchable composites

Next-generation electronics will autonomously respond to local stimuli and be seamlessly integrated with the human body, opening the doors for opportunities in environmental monitoring, advanced consumer products, and health diagnostics for personalized therapy. For example, biodegradable electronics promise to accelerate the integration of electronics with health care by obviating the need for costly device-recovery surgeries that increase infection risk. Moreover, the environmentally critical problem of discarded electronic waste would be relieved. The underpinning of such next-generation electronics is the development of new materials with a wide suite of functional properties beyond our current toolkit. Organic polymers are a natural bridge between electronics and soft matter, where the vast chemical design space allows tunability of electronic, mechanical, and transient properties. Our research group leverages the rich palette of polymer chemistry to design new materials encoded with information for self-assembly, degradability, and electronic transport. In this talk, I will share our progress on the molecular design of degradable semiconducting polymers featuring acid-labile motifs.

  • Share this: