Building a circular economy for sustainable chemicals and materials


According to a United Nations report, chemicals production and consumption are to be doubled in the next 10 years to fulfil our essential needs. It’s simply not going to happen unless we adopt a circular economy approach. The UKRI Interdisciplinary Centre for Circular Chemical Economy was established in January 2021 to kick start the timely transition of the UK’s £32bn chemical industry into a circular system. In this talk, I will outline the vision and remit of the Centre, and discuss why we need a whole system approach and an interdisciplinary team to address the challenge. I will then give some examples of the on-going research in our lab to tackle the challenges in the development of the circular chemical economy. I will show how we combine classic electrochemical engineering with cutting-edge enabling tools such as deep learning and digital twin technologies to deliver novel sustainable chemicals and materials and recover chemical feedstocks from end-of-life materials and captured CO2 emissions.

According to a United Nations report, chemicals production and consumption are to be doubled in the next 10 years to fulfil our essential needs. It’s simply not going to happen unless we adopt a circular economy approach. The UKRI Interdisciplinary Centre for Circular Chemical Economy was established in January 2021 to kick start the timely transition of the UK’s £32bn chemical industry into a circular system. In this talk, I will outline the vision and remit of the Centre, and discuss why we need a whole system approach and an interdisciplinary team to address the challenge. I will then give some examples of the on-going research in our lab to tackle the challenges in the development of the circular chemical economy. I will show how we combine classic electrochemical engineering with cutting-edge enabling tools such as deep learning and digital twin technologies to deliver novel sustainable chemicals and materials and recover chemical feedstocks from end-of-life materials and captured CO2 emissions.  

  • Share this: