Dr. David Stanton Ginger

Professor University of Washington

Biography

David S. Ginger earned dual B.S. degrees in chemistry and physics at Indiana University in 1997 with departmental honors and highest distinction, performing undergraduate research with Victor E. Viola. He received a British Marshall Scholarship and an NSF Graduate Fellowship and completed his Ph.D. in physics with Neil C. Greenham in the Optoelectronics group at the University of Cambridge (UK) in 2001. After a joint NIH and DuPont Postdoctoral Fellowship at Northwestern University in Chad Mirkin's lab, he joined the faculty at the University of Washington in Seattle where he is currently the Alvin L. and Verla R. Kwiram Endowed Professor in Chemistry, Washington Research Foundation Distinguished Scholar in Clean Energy, and Adjunct Professor of Physics, and serves as the Chief Scientist of the Washington state funded UW Clean Energy Institute, and co-Founding director of the NW IMPACT materials institute. He is an elected fellow of the AAAS (American Association for the Advancement of Science) and has been named a Research Corporation Cottrell Scholar, a Research Corporation Scialog Fellow in solar energy conversion, an Alfred P. Sloan Foundation Research Fellow, a Camille Dreyfus Teacher-Scholar, and has received the Presidential Early Career Award for Scientists and Engineers, and the ACS Unilever Award in Colloid and Surfactant Science. He is the 2012 recipient of the Burton Medal of the Microscopy Society of America, participated in the 2012-2013 class of the Defense Science Study Group, and was honored as a Finalist for the Blavatnik National Awards for Young Scientists in 2016, and was elected to the Washington State Academy of Sciences in 2018. His research centers on the physical chemistry of nanostructured materials with applications in optoelectronics, energy and sensing, including perovskite solar cells and organic bioelectronics, and his group makes use of techniques ranging from scanning probe microscopy to optical spectroscopy. He is an Associate Editor at the ACS journal Chemical Reviews.

All sessions by Dr. David Stanton Ginger

Defect Control to Reach Solar Cell Efficiency Limits and Improve Stability of Hybrid Perovskites
03:15 PM

Halide perovskites are currently of intense interest for solar energy and optoelectronic applications. Remarkable gains in performance have been demonstrated in the past few years. However, most current devices are still limited by non-radiative recombination losses. We focus on uncovering and eliminating these loss processes. Experiments suggest that electrical heterogeneities in both the perovskite active layer, as well as the perovskite/electrode interface affect carrier diffusion and non-radiative recombination processes. Both optical and scanning probe microscopy experiments show how grain boundaries slow lateral carrier transport and how interfaces serve as recombination centers in these systems. Multimodal microscopy experiments reveal the combined role of electrochemistry and ion motion on defect formation. We show that by using chemical passivation of the perovskite surfaces we are able to obtain carrier lifetimes and photoluminescence intensities in solution-processed thin films that rival those in the best single crystals, achieving over 90% PL internal quantum efficiency and quasi-Fermi level splittings that exceed approach the Shockley-Queisser limit under illumination. We further explore the defect chemistry on local ion motion and phase stability of mixed perovskites.

Dr. David Stanton Ginger

Professor University of Washington

Details