Dr. Giulia Grancini

Team Leader Ecole polytechnique fédérale de Lausanne

Biography

Giulia Grancini is Team Leader at the Ecole Polytechnique Fédérale de Lausanne (EPFL) Valais based in Sion (Switzerland). She graduated from Politecnico of Milan in 2008 (MS in Physical Engineering). In 2012, she obtained her PhD in Physics cum Laude from the Politecnico of Milan with an experimental thesis focused on the realization of a new femtosecondmicroscope for mapping the ultrafast phenomena at organic interfaces. During the PhD she worked for one year at the Physics Department of Oxford University where she pioneered new concepts within polymer/oxide solar cell technology. From 2012-2015, she has been post-doctoral researcher at the Italian Institute of Technology (CNST@PoliMi) in Milan. In 2015 she joined the group of Prof. Nazeeruddin at EPFL awarded with a Marie Skłodowska-Curie Fellowship. Since 2016, she is Team Leader at EPFL, aiming to address the fundamental physics behind advanced photovoltaic devices. In 2017 she has been awarded with the Swiss Ambizione Energy Grant, which provides independent young researchers with up to 1million CHF for leading innovative projects in the energy sector. In July 2018 she has been awarded with a ERC Starting Grant. She is author of 72 peer-reviewed scientific papers bringing her h-index to 32 (>8700 citations). Giulia's work focuses on the current scientific challenge of exploring the fundamental photophysical processes underlying the operation of advanced optoelectronic devices, with a special attention to new generation photovoltaics. In particular, she contributed with pioneer works to the understanding of the interface physics which governs the operation of organic and hybrid perovskite solar cells.

All sessions by Dr. Giulia Grancini

Engineering 2D/3D Hybrid Perovskite Interfaces for Stable and Efficient Solar Cells
10:00 AM

Three-dimensional (3D) methylammonium lead iodide perovskite solar cells are undoubtedly leading the photovoltaic scene with their power conversion efficiency (PCE) >23%, holding the promise to be the near future solution to harness solar energy. Tuning the material composition, i.e. by cations and anions substitution, and functionalization of the device interfaces have been the successful routes for a real breakthrough in the device performances. However, poor stability (= device lifetime), mainly due to material decomposition upon contact with water, is now the bottleneck for the widespread of this technology. Diverse technological approaches have been proposed delivering appreciable

Dr. Giulia Grancini

Team Leader Ecole polytechnique fédérale de Lausanne

Details