Dr. Maria Antonietta Loi

Full Professor University of Groningen

Biography

Maria Antonietta Loi studied physics at the University of Cagliari in Italy where she received the PhD in 2001. In the same year she joined the Linz Institute for Organic Solar cells, of the University of Linz, Austria as a postdoctoral fellow. Later she worked as researcher at the Institute for Nanostructured Materials of the Italian National Research Council in Bologna, Italy. In 2006 she became assistant professor and Rosalind Franklin Fellow at the Zernike Institute for Advanced Materials of the University of Groningen, The Netherlands. She is now full professor in the same institution and chair of the Photophysics and OptoElectronics group. She has published more than 170 peer-reviewed articles on photophysics and optoelectronics of different types of materials. In 2012 she has received an ERC Starting Grant from the European Research Council. She currently serves as associated editor of Applied Physics Letters and she is member of the international advisory board of Advanced Electronic Materials and Advanced Materials Interfaces. In 2018 she received the Physicaprijs from the Dutch physics association for her outstanding work on organic-inorganic hybrid materials.

All sessions by Dr. Maria Antonietta Loi

Sn-based Hybrid Perovskites: from solar cells to hot electrons
03:45 PM

Thanks to the intensive research efforts of a large scientific community over the past 7 years, lead (Pb)-based hybrid perovskite solar cells have reached impressive power conversion efficiency. Against the initial criticism about their instability, also large improvements in the thermal and photo stability of this kind of solar cell were obtained by using more stable precursors, and robust hole/electron transport layers. Despite these outstanding accomplishments, the toxicity of lead causes concerns about the possible large-scale utilization of this new type of solar cell. Among the various alternatives to lead, Sn has been recognized to have a great potential, as the Sn-based hybrid perovskites display excellent optical and electrical properties such as high absorption coefficients, very small exciton binding energies and high charge carrier mobilities. In my talk I will show that Sn-based perovskites display evidences of photoluminescence from hot-carriers with unexpectedly long lifetime. The asymmetry of the PL spectrum at the high-energy edge, is accompanied by the unusually large blue shift of the time-integrated photoluminescence with increasing the excitation power. These phenomena are associated with slow hot carrier relaxation and state-filling of band edge states. I will further show all-tin-based hybrid perovskite solar cells with efficiencies of up to 9%. This record result is obtained with the addition of trace amount of 2D tin perovskite, which initiates the homogenous growth of highly crystalline and oriented FASnI3 grains at low temperature.

Dr. Maria Antonietta Loi

Full Professor University of Groningen

Details