Dr. Michael Lawrence Chabinyc

Professor University of California Santa Barbara

Biography

Professor Michael Chabinyc is Chair of the Materials Department at the University of California Santa Barbara. He received his Ph.D. in chemistry from Stanford University and was an NIH postdoctoral fellow at Harvard University. He was a Member of Research Staff at (Xerox) PARC prior to joining UCSB in 2008. His research group studies fundamental properties of organic semiconducting materials and thin film inorganic semiconductors with a focus on materials useful for energy conversion. He has authored more than 180 papers across a range of topics and is inventor on more than 40 patents in the area of thin film electronics. 

All sessions by Dr. Michael Lawrence Chabinyc

Solution Processable Semiconductors for Solar Cells
10:50 AM

Solution-processed materials have significant promise for future generation solar cells. We will discuss our efforts to understand charge transport and carrier lifetimes as a function of structure in two classes of materials for thin film solar cells ā€“ organic semiconductors and hybrid organic metal halides. Organic bulk heterojunction (BHJ) solar cells have a complex structure where an electron donor and acceptor meet in a bicontinuous network with nanoscale dimensions. The development of non-fullerene acceptors has led to prospects for improvement of their power conversion efficiency through reduced losses in the open circuit voltage. We will discuss recent work to understand the origin of these effects in non-fullerene acceptors. Hybrid organic metal halides, such as CH3NH3PbI3, have garnered significant attention because they are earth-abundant, solution-processable materials that can be used to form solar cells with high power conversion efficiency (>20%). An interesting feature of these compounds is the ability to form layered Ruddlesden-Popper phases with quantum confinement by judicious choice of mixed organic cations. We will present our work on understanding the electronic properties of 3D and 2D organic metal halides using Pb- and Bi-based systems using techniques such as time-resolved microwave conductivity. We will also describe our efforts to characterize and control the phase behavior in thin films of layered Ruddlesden-Popper compounds, (CH3(CH2)3NH3)2(CH3NH3)nāˆ’1PbnI3n+1 (n = 1, 2, 3, 4) towards high stability devices. Despite structural disorder apparent from quantitative analysis of grazing incidence X-ray scattering and electron microscopy, these materials surprisingly still have sharp band edges. The implications of these studies suggest that there is still much to be learned from these exciting materials systems.

Dr. Michael Lawrence Chabinyc

Professor University of California Santa Barbara

Details